Anticancer effects of O-desmethylangolensin are mediated through cell cycle arrest at the G2/M phase and mitochondrial-dependent apoptosis in Hep3B human hepatocellular carcinoma cells.
نویسندگان
چکیده
In the present study, in order to investigate the anticancer effects of O-desmethylangolensin (O-DMA) on human hepatocellular carcinoma Hep3B cells, we first examined the antiproliferative effect of O-DMA. When Hep3B cells were treated with O-DMA at various concentrations (5-200 µM) for 24, 48 or 72 h, cell proliferation decreased significantly in a dose- and time-dependent manner. Moreover, O-DMA exposure at the IC50 concentration for 72 h arrested cells at the G2/M phase, which was accompanied by a reduction in CDK1, and an increase in cyclin A and B. Under the same conditions, O-DMA significantly increased the number of sub-G1 phase cells. Additionally, an Annexin V assay revealed that exposure to O-DMA affected the rate of cell apoptosis. O-DMA caused the downregulation of Bcl-2 and upregulation of Bax, which led to cytochrome c release from the mitochondria and activation of caspase-3. Taken together, these data suggest that O-DMA exhibits anticancer activity by arresting the cell cycle at G2/M phase and causing mitochondrial-dependent apoptosis in Hep3B cells.
منابع مشابه
Downregulation of Kinesin Spindle Protein Inhibits Proliferation, Induces Apoptosis and Increases Chemosensitivity in Hepatocellular Carcinoma Cells
Background: Kinesin spindle protein (KSP) plays a critical role in mitosis. Inhibition of KSP function leads to cell cycle arrest at mitosis and ultimately to cell death. The aim of this study was to suppress KSP expression by specific small-interfering RNA (siRNA) in Hep3B cells and evaluate its anti-tumor activity. Methods: Three siRNA targeting KSP (KSP-siRNA #1-3) and one mismatched-siRNA (...
متن کاملO-desmethylangolensin inhibits the proliferation of human breast cancer MCF-7 cells by inducing apoptosis and promoting cell cycle arrest
The aim of the present study was to investigate the anticancer effect of O-desmethylangolensin (O-DMA) by assessing cell proliferation, apoptosis and cell cycle distribution, as well as exploring the mechanisms underlying these effects in breast carcinoma MCF-7 cells. The cells were exposed to O-DMA (5-200 μM) for 24, 48 and 72 h. The results revealed that cell proliferation was significantly i...
متن کاملCompound K, a metabolite of ginseng saponin, induces apoptosis of hepatocellular carcinoma cells through the mitochondria-mediated caspase-dependent pathway
Compound K (20-O-beta-d-glucopyranosyl-20(S)-protopanaxadiol, CK), an intestinal bacterial metabolite of ginseng protopanaxadiol saponins, has been shown to possess the potential ability in preventing tumor development and suppressing cancer growth. However, the exact mechanism of its antitumorigenic effects is still not clear. The purpose of this project was to detect whether CK has an antican...
متن کاملSmh-3 induces G(2)/M arrest and apoptosis through calcium‑mediated endoplasmic reticulum stress and mitochondrial signaling in human hepatocellular carcinoma Hep3B cells.
In the present study, we investigated the antitumor effects of Smh-3 on the viability, cell cycle and apoptotic cell death in human hepatocellular carcinoma Hep3B cells in vitro. We also investigated the molecular mechanisms involved in the effects of Smh-3 on human hepatoma Hep3B cells, including the effects on protein and mRNA levels which were determined by western blotting and DNA microarra...
متن کاملDihydromyricetin suppresses the proliferation of hepatocellular carcinoma cells by inducing G2/M arrest through the Chk1/Chk2/Cdc25C pathway.
The aim of the present study was to evaluate the antitumor mechanism of dihydromyricetin (DHM). Results showed that DHM significantly inhibited cell viability of HepG2 and Hep3B cells in a dose-dependent manner. DHM induced G2/M cell-cycle arrest in HepG2 and Hep3B cells by altering the expression of cell cycle proteins such as cyclin A, cyclin B1, Cdk1, p53, Cdc25c, p-Cdc25c Chk1 and Chk, whic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International journal of molecular medicine
دوره 31 3 شماره
صفحات -
تاریخ انتشار 2013